Frameshift mutation in the survival motor neuron gene in a severe case of SMA type I.

نویسندگان

  • C Brahe
  • O Clermont
  • S Zappata
  • F Tiziano
  • J Melki
  • G Neri
چکیده

Recently, a spinal muscular atrophy (SMA) determining gene, termed survival motor neuron (SMN) gene, has been isolated from the 5q13 region and found deleted in most patients. A highly homologous copy of this gene has also been isolated and located in a centromeric position. We have analyzed 158 patients (SMA types I-IV) and found deletions of SMN exon 7 in 96.8%. Mutations other than gross deletions seem to be extremely rare. In one of the undeleted SMA type I patients, a newborn who survived for only 42 days, we detected a maternally inherited 5 bp microdeletion in exon 3, resulting in a premature stop codon. By RT-PCR and long range PCR amplification we were able to show that the deletion belongs to the SMN gene, rather than to the centromeric copy, and that the proposita had no paternal SMN gene. Analysis of the neuronal apoptosis inhibitor protein (NAIP) gene, which maps close to SMN and has been proposed as a SMA modifying gene, suggests the presence of at least one full-length copy. Haplotype analysis of closely linked polymorphic markers suggests that the proposita also lacks the maternally derived copy of the centromeric homologue of SMN supporting the hypothesis that the severity of the phenotype might depend on the reduced number of centromeric genes in addition to the frameshift mutation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی ژن NAIP در مبتلایان به بیماری آتروفی عضلانی ـ نخاعی در منطقه‌ی آذربایجان شرقی طی سال‌های 1383 تا 1384

Background: Spinal muscular atrophy includes a group of neuromuscular disorders characterized by degeneration of anterior horn cells in the spinal cord, and leads to progressive muscular weakness. NAIP is one of the genes that inhibits motor neuron apoptosis. Deletion of this gene is usually observed in type I SMI. The aim of this study was to investigate the frequency and pathogenicity of NAIP...

متن کامل

Spinal Muscular Atrophy: A Short Review Article

Spinal muscular atrophy (SMA) is a genetic disorder which affect nervous system and is characterized with progressive distal motor neuron weakness. The survival motor neuron (SMN) protein level reduces in patients with SMA. Two different genes code survival motor neuron protein in human genome. Skeletal and intercostal muscles denervation lead to weakness, hypotony, hyporeflexia, respiratory fa...

متن کامل

An 11 base pair duplication in exon 6 of the SMN gene produces a type I spinal muscular atrophy (SMA) phenotype: further evidence for SMN as the primary SMA-determining gene.

The gene for autosomal recessive spinal muscular atrophy (SMA) has been mapped to 5q12 in a region that contains repeated markers and genes. Three cDNAs that detect deletions in SMA patients have been reported. One of these, the survival motor neuron (SMN) cDNA, is encoded by two genes (SMNT and SMNC) which are distinguished by base changes in exons 7 and 8. Exon 7 of the SMNT gene is not detec...

متن کامل

SMN1 and NAIP genes deletions in different types of spinal muscular atrophy in Khuzestan province, Iran

 Background: Spinal muscular atrophy (SMA) is the second most common lethal autosomal recessive disease. It is a neuromuscular disorder caused by degenerative of lower motor neurons and occasionally bulbar neurons leading to progressive limb paralysis and muscular atrophy. The SMN1 gene is recognized as a SMA causing gene while NAIP has been characterized as a modifying factor for the clinical ...

متن کامل

Reduced survival motor neuron (Smn) gene dose in mice leads to motor neuron degeneration: an animal model for spinal muscular atrophy type III.

Spinal muscular atrophy (SMA) is caused by deletion or specific mutations of the telomeric survival motor neuron ( SMN ) gene on human chromosome 5. The human SMN gene, in contrast to the Smn gene in mouse, is duplicated and the centromeric copy on chromosome 5 codes for transcripts which preferentially lead to C-terminally truncated SMN protein. Here we show that a 46% reduction of Smn protein...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 5 12  شماره 

صفحات  -

تاریخ انتشار 1996